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Analytical polarization transfer functions are presented for spin
ystems consisting of four spins 1

2 with arbitrary coupling constants
nder isotropic mixing conditions. In addition, simplified transfer
unctions were derived for symmetric coupling topologies. Based
n these transfer functions optimal durations for the mixing pe-
iod can be determined for correlations of interest. © 1999 Academic

ress

Key Words: Hartmann–Hahn transfer; isotropic mixing; analyt-
cal transfer functions; TOCSY; TACSY.

INTRODUCTION

Isotropic mixing (1, 2) has become one of the most imp
ant techniques for the transfer of polarization in high-res
ion NMR spectroscopy. Many homonuclear and heteronu
xperiments use isotropic mixing steps to maximize pola

ion transfer. The efficiency of isotropic mixing experime
epends critically on the duration of the mixing time. A ra
al choice of the optimum mixing time can be made base
oherence or polarization transfer functions which describ
ynamics of the transfer of interest. Although transfer fu

ions can be calculated numerically with the help of simula
rograms (3–9), closed form analytical expressions for imp

ant transfer functions are highly desirable.
Analytical isotropic mixing transfer functions have be

eported for a number of special cases. For a system cons
f two isotropically coupled spins12 the transfer functions we
erived by Braunschweiler and Ernst (1). For the general cas
f three coupled spins12 the coherence and polarization trans

unctions have recently been reported (10). Polarization an
oherence transfer functions have also been reported fo
ropically coupled A2X2 and A2X3 spin systems and for AXN
pin systems withN # 6 (11, 12). Furthermore it has bee
hown that the evolution frequencies in an AMXN system ar
lways identical to the evolution frequencies in a corresp

ng AXM1N21 system (13). Analytical polarization transfe
unctions for a linear spin chain and a star-like coupling to

1 To whom correspondence should be addressed. Fax:149 69 7982 9128
-mail: sg@org.chemie.uni-frankfurt.de.
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gy consisting of four spins with equal coupling constants w
erived by Majumdar (14). In this article, analytical polariza

ion transfer functions are presented for the general case o
oupled spins1

2 under isotropic mixing conditions with arb
rary coupling constantsJij . Furthermore the special cases
n AMX2-type and a linear AM2X-type spin system are di
ussed in detail and it is shown that the A2X2-type and the
X 3-type spin systems can be reduced to the case of a
pin system with identical coupling constantsJij 5 J.

THEORY

For a spin system consisting of four coupled spins1
2, the idea

sotropic mixing Hamiltonian has the form

* iso 5 2p O
i,j

4

Jij I iI j. [1]

n analogy to the case of three coupled spins under isot
ixing conditions, polarization transfer functions can be

ermined if the eigenvalues and eigenfunctions of* iso are
nown (10). As

@* iso, F 2# 5 0 [2]

nd

@* iso, Fz# 5 0 [3]

convenient basis is formed by a set of simultaneous e
unctionsuJ, m& of the square of the total spin operatorF 2 and
f Fz. These eigenfunctions may readily be constructed

he help of Clebsch–Gordan coefficients (15). Note that the
igenfunctions depend in general on the order in which
ingle-spin functions are combined. Here we combined sp
and 3, 4 first, before the two pairs were combined

able 1).
1090-7807/99 $30.00
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20 LUY, SCHEDLETZKY, AND GLASER
In the basisuJ, m& the Hamiltonian is block diagonal wi
ine submatrices: five identical 13 1 matrices

A 5 2p~S 1 A! 5
p

2 O
i,j

4

Jij 5 l [4]

or J 5 2 andm 5 2, 1, 0, 21, 22; three identical 33 3
atrices

B 5 2pSB11 B12 B13

B21 B22 B23

B31 B32 B33

D
5 2pS ~S 2 A! Î2C Î2B

Î2C ~22D 2 S! D
Î2B D ~2D 2 S!

D [5]

or J 5 1 and m 5 1, 0, 21; and one 23 2 matrix for
5 0

C 5 2pS ~S 2 2A! 2Î3D
2Î3D 23S D [6]

TABLE 1
Simultaneous Eigenfunctions of F2 and Fz

u2, 2& 5 uaaaa&

u2, 1& 5 1
2 (uaaab& 1 uaaba& 1 uabaa& 1 ubaaa&)

u2, 0& 5 1
Î6

(uaabb& 1 uabab& 1 uabba& 1 ubaab&

1 ubaba& 1 ubbaa&)

u2, 21& 5 1
2 (uabbb& 1 ubabb& 1 ubbab& 1 ubbba&)

u2, 22& 5 ubbbb&

u1, 1, 1& 5 1
2 (uaaab& 1 uaaba& 2 uabaa& 2 ubaaa&)

u1, 0, 1& 5 1
Î2

(uaabb& 2 ubbaa&)

u1, 21, 1& 5 1
2 (uabbb& 1 ubabb& 2 ubbab& 2 ubbba&)

u1, 1, 2& 5 1
Î2

(uabaa& 2 ubaaa&)

u1, 0, 2& 5 1
2 (uabab& 1 uabba& 2 ubaab& 2 ubaba&)

u1, 21, 2& 5 1
Î2

(uabbb& 2 ubabb&)

u1, 1, 3& 5 1
Î2

(uaaab& 2 uaaba&)

u1, 0, 3& 5 1
2 (uabab& 2 uabba& 1 ubaab& 2 ubaba&)

u1, 21, 3& 5 1
Î2

(ubbab& 2 ubbba&)

u0, 0, 1& 5 1
Î3

(uaabb& 1 ubbaa&) 2 1

2Î3
(uabab& 1 uabba&

1 ubaab& 1 ubaba&)

u0, 0, 2& 5 1
2 (uabab& 2 uabba& 2 ubaab& 1 ubaba&)
ith

S 5
J12 1 J34

4
; D 5

J12 2 J34

4

A 5
J13 1 J14 1 J23 1 J24

4
; B 5

J13 2 J14 1 J23 2 J24

4

C 5
2J13 2 J14 1 J23 1 J24

4
; D 5

J13 2 J14 2 J23 1 J24

4
.

[7]

he eigenvaluel of matrix A is given by Eq. [4]. The thre
igenvaluesm i of the 33 3 matrix B can be derived with th
elp of Cardan’s formula (16):

m1 5 2
l

3
1 4pR cosSf

3D
m2,3 5 2

l

3
2 4pR cosSf 7 p

3 D [8]

ith

f 5 arccosS2Q

R3 D [9]

Q 5
1

27
@~ A 2 2S!~12S 2 2 36D 2

1 9~B2 1 C2 2 D 2! 1 A2! 2 2S~2A2 2 8S 2!#

1 2@DC2 2 DB2 2 BCD# [10]

R 5
1

3
Î~ A 2 2S! 2 1 6B2 1 12D 2 1 6C2 1 3D 2 . @11#

he eigenvaluesn i of C can be obtained by solving its qu
ratic characteristic polynomial

n1,2 5 2l 7 2pW [12]

ith

W 5 ÎA2 1 3D 2 1 4S~S 2 A! . [13]

he eigenvectors of matrixB can also be solved analytical
or each eigenvaluem i the three componentsa i , b i , andg i of

he corresponding eigenvector can be expressed in terms
atrix elementsBlm defined in Eq. [5],

a i 5 c i
~123!/ni; b i 5 c i

~231!/ni; g i 5 c i
~312!/ni [14]
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21ISOTROPIC MIXING TRANSFER FUNCTIONS FOR FOUR COUPLED SPINS
ith

c i
~lmn! 5 Bmn~Bmn 2 Blm 2 Bln! 2 BmmBnn 1 BmmBln

1 BnnBlm 1 ~Bmm 2 Blm 1 Bnn 2 Bln!m i 2 m i
2

[15]

nd the normalization

ni 5 Î~c i
~123!! 2 1 ~c i

~231!! 2 1 ~c i
~312!! 2 . [16]

his solution for the eigenvectors of matrixB is general if the
hree eigenvaluesm i are nondegenerate. Furthermore i
equired that

m i Þ Bmm 2 Blm 1 Bnn 2 Bln [17]

or { lmn} 5 {123}, {231}, {312}. With only slight varia-
ions of the coupling constants these conditions can alwa
ulfilled and Eqs. [14]–[16] yield the resulting eigenvec
omponents.
The two componentsh i andz i of the eigenvector for each

he eigenvaluesn i of matrix C can be expressed as

h2 5 z1 5 cosc; 2z2 5 h1 5 sin c [18]

ith

c 5 arctanS Î3D

2S 2 A 1 WD [19]

nd if 2S 2 A 1 W 5 0 then

c 5 5
p

2
: if D . 0

2
p

2
: if D , 0

. [20]

ased on Eqs. [14] and [18] the eigenfunctionsuc k& of the
sotropic Hamiltonian* iso can be expressed in terms of
igenfunctionsuJ, m& of F 2 andFz (Table 2).
The eigenfunctionsuc1&, . . . ,uc5& correspond to the eige

alue l, the eigenfunctionsuc6&, uc9&, and uc12& to m1, the
igenfunctionsuc7&, uc10&, and uc13& to m2, the eigenfunction

c8&, uc11&, anduc14& to m3, and the eigenfunctionsuc15& anduc16&
o the eigenvaluesn1 andn2, respectively.

Hence, in the eigenbasisuc1&, . . . ,uc16& of * iso, the propaga
or

U iso~t! 5 exp$2i* isot% [21]
be
s a diagonal matrix with the elements (U) 11 5 (U) 22 5 (U) 33

(U) 44 5 (U) 55 5 exp{2ilt}, ( U) 66 5 (U) 99 5 (U) 1212 5
xp{2im 1t}, ( U) 77 5 (U) 1010 5 (U) 1313 5 exp{2im 2t},
U) 88 5 (U) 1111 5 (U) 1414 5 exp{2im 3t}, ( U) 1515 5
xp{2in 1t}, and (U) 1616 5 exp{2in 2t}. The normalized
olarization transfer function between two operatorsA andB is
efined as (2)

TA3B~t! 5
Tr $B†U~t! AU†~t!%

Tr $B†B%
. [22]

ith the explicit form of the propagatorU iso(t) (Eq. [21]) and
f the eigenfunctionsuc k& (Table 2), the desired polarizati

ransfer functions can be derived in a straightforward w
ompact analytical solutions were found with the help of
lgebraic programMathematica(17).

GENERAL RESULTS

The following discussion is focused on polarization tran
unctions betweenI kz andI lz (with k, l 5 1, 2, 3, or 4). Excep
or constant terms, all polarization transfer functions can
xpressed as combinations of 12 cosine terms with the

ation frequencies corresponding to differences of the ei
aluesum i 2 lu, um i 2 m j u, and um i 2 n j u.
In practice, the polarization transfer between two diffe

pins (k Þ l ) is of particular interest, because it describes
ixing-time dependence of the integrated intensity of the c
eak between the spinsk andl . The transfer functionT12(t) 5

I 1z3I 2z between spink 5 1 andl 5 2 can be expressed in t
orm

TABLE 2
Eigenfunctions of * iso Used for Calculations

uc1& 5 u2, 2&
uc2& 5 u2, 1&
uc3& 5 u2, 0&
uc4& 5 u2, 21&
uc5& 5 u2, 22&
uc6& 5 a1u1, 1, 1& 1 b1u1, 1, 2& 1 g1u1, 1, 3&
uc7& 5 a2u1, 1, 1& 1 b2u1, 1, 2& 1 g2u1, 1, 3&
uc8& 5 a3u1, 1, 1& 1 b3u1, 1, 2& 1 g3u1, 1, 3&
uc9& 5 a1u1, 0, 1& 1 b1u1, 0, 2& 1 g1u1, 0, 3&

uc10& 5 a2u1, 0, 1& 1 b2u1, 0, 2& 1 g2u1, 0, 3&
uc11& 5 a3u1, 0, 1& 1 b3u1, 0, 2& 1 g3u1, 0, 3&
uc12& 5 a1u1, 21, 1& 1 b1u1, 21, 2& 1 g1u1, 21, 3&
uc13& 5 a2u1, 21, 1& 1 b2u1, 21, 2& 1 g2u1, 21, 3&
uc14& 5 a3u1, 21, 1& 1 b3u1, 21, 2& 1 g3u1, 21, 3&
uc15& 5 h1u0, 0, 1& 1 z1u0, 0, 2&
uc16& 5 h2u0, 0, 1& 1 z2u0, 0, 2&

Note.The coefficientsa i , b i , g i , h i , andz i are given in Eqs. [14] and [18
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22 LUY, SCHEDLETZKY, AND GLASER
T12~t! 5 O
i51

3

ai$1 2 cos~um i 2 lut!%

1 O
i,j

3

bij$1 2 cos~um i 2 m jut!%

1 O
i51

3 O
j51

2

cij$1 2 cos~um i 2 n jut!% [23]

ith the coefficients

ai 5 2
5

48
~a i

2 2 2b i
2! [24]

bij 5 2
a ia j~g ig j 2 b ib j!

4
1

a i
2b j

2 1 a j
2b i

2

8

2
a i

2a j
2

16
2

b i
2b j

2

4
[25]

cij 5 2
h j

2~2a i
2 2 b i

2!

24
2 g iz jS b ih j

4Î3
2

g iz j

8 D . [26]

he transfer functionsTkl(t) for arbitrary k Þ l can be
alculated based on Eqs. [23]–[26] if the spin labels of
oupling constants are permuted.
The transfer functionsTkk(t) that represent the integrat

ntensities of the diagonal signals can be derived in analo
he transfer functionsTkl(t). For example, the transfer functi

11(t) is given by

T11~t! 5 1 2 O
i51

3

a9i$1 2 cos~um i 2 lut!%

2 O
i,j

3

b9ij$1 2 cos~um i 2 m jut!%

2 O
i51

3 O
j51

2

c9ij$1 2 cos~um i 2 n jut!% [27]

ith the coefficients

a9i 5
5

48
~a i 1 Î2b i!

2 [28]

b9ij 5
1

4 Sa ia j

2
1 g ig j 2

a ib j

Î2
2

a jb i

Î2 D 2
[29]
e

to

c9ij 5
1

4 Sa ih j

Î3
1

g iz j

Î2
2

b ih j

Î6 D 2

. [30]

gain, for arbitrary k the transfer functionsTkk(t) can be
btained by Eqs. [27]–[30] by a permutation of the spin lab

SPECIAL CASES

The general solution presented is valid for all four-s
ystems with nondegenerate eigenvaluesm i (cf. Eqs. [8] and
12]) and the restrictions of Eq. [17]. In this section we w
iscuss some special coupling topologies with simplified
erence transfer functions (cf. Fig. 1).
The special case of an effective AMX2-type spin system

hown in Fig. 1a. In this case the spins 3 and 4 are magnet
quivalent asJ13 5 J14 andJ23 5 J24. Since coherence trans

unctions do not depend on the coupling constant betwee
wo equivalent spins 3 and 4,J34 is set to zero without loss
enerality (18). In this case the polarization transfer functio
implify according to the reduced block structure of the H
ltonian. The submatrixB of Eq. [5] consists of a 23 2 and a

3 1 block

B ~a! 5
p

2 SJ12 2 2J13 2 2J23 Î8~ J23 2 J13! 0
Î8~ J23 2 J13! 23J12 0

0 0 J12

D
[31]

nd the matrixC of Eq. [6] is diagonal

C ~a! 5
p

2 SJ12 2 4J13 2 4J23 0
0 23J12

D . [32]

he resulting eigenvalues of the Hamiltonian of the effec
MX 2-type spin system are

l ~a! 5
p

2
~ J12 1 2J13 1 2J23! 5 A ~a!

m 1,2
~a! 5

p

2
~2J12 2 J13 2 J23 7 W~a!!

m 3
~a! 5

p

2
J12

n 1
~a! 5

p

2
~ J12 2 4J13 2 4J23!

n 2
~a! 5 2

3p

2
J12 [33]
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23ISOTROPIC MIXING TRANSFER FUNCTIONS FOR FOUR COUPLED SPINS
ith

W~a! 5 Î~2J12 2 J13 2 J23!
2 1 8~ J13 2 J23!

2 . [34]

he components of the eigenvectors of the 23 2 block of the
atrix B(a) are

a 1
~a! 5 b 2

~a! 5 cosc ~a!; 2a 2
~a! 5 b 1

~a! 5 sin c ~a! @35#

ith the mixing angle

c ~a! 5 arctanS Î8~ J23 2 J13!

2J12 2 J13 2 J23 2 W~a!D . [36]

he resulting polarization transfer functions have a form
lar to that of the general polarization transfer functions (E
23] and [27])

Tkl
~a!~t! 5 O

i51

2

di$1 2 cos~um i
~a! 2 l ~a!ut!%

1 e12$1 2 cos~um 1
~a! 2 m 2

~a!ut!%

1 O
i51

3 O
j51

2

f ij$1 2 cos~um i
~a! 2 n j

~a!ut!% [37]

FIG. 1. In addition to the general case with arbitrary coupling consta
are discussed (see text): the general effective AMX2-type spin system (a),

2X2-type spin system (d), and the equally coupled four-spin system (e
oupling constants between magnetically equivalent spins.
-
.

Tkk
~a!~t! 5 1 2 O

i51

2

di$1 2 cos~um i
~a! 2 l ~a!ut!%

2 e12$1 2 cos~um 1
~a! 2 m 2

~a!ut!%

2 O
i51

3 O
j51

2

f ij$1 2 cos~um i
~a! 2 n j

~a!ut!% [38]

ut with only six nonvanishing coefficientsd1, d2, e12, f 21, f 22,
ndf 32 shown in Table 3 for the polarization transfer functi
11
(a), T(34)(34)

(a) , T12
(a), andT1(34)

(a) , where (34) indicates the pair
ffectively equivalent spins (for example,T1(34)

(a) 5

I 1z3(I 3z1I 4z)
(a) ). The polarization transfer functionsT22

(a) andT2(34)
(a)

re obtained fromT11
(a) andT1(34)

(a) by a simple permutation of th
pin labels of the coupling constants.
If J12 5 0 an effective linear AM2X-type spin system resul

Fig. 1b) which is of interest for spin systems containin
ethylene group. The polarization transfer functions for

ase are derived from the effective AMX2-type spin system b
imply settingJ12 5 0. As a result the eigenvaluesm 3

(b) andn 2
(b)

anish as well as the coefficientf 32 of the polarization transfe
unctions.

The analytical solutions for the effective AX3-type coupling
opology with three magnetically equivalent spins 2, 3, an
nd for the A2X2-type coupling topology with magnetica
quivalent spins 1, 2 and 3, 4, respectively, were derive
11). The coupling constants for the AX3-type spin system a
12 5 J13 5 J14 5 J. Since the coherence transfer functi

five different special coupling topologies of a spin system consisting of
effective linear AM2X-type spin system (b), the AX3-type spin system (c), th

qual coupling constants are shown with equal line thickness. Dotted linsent
nts
the
). E
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24 LUY, SCHEDLETZKY, AND GLASER
o not depend on the coupling constants between the ma
cally equivalent spins 2, 3, and 4 we may also setJ23 5 J24 5

34 5 J without loss of generality (cf. Fig. 1c). In this case
pin topology is reduced to the spin system consisting of
qually coupled spins (cf. Fig. 1e) with the coupling const
12 5 J13 5 J14 5 J23 5 J24 5 J34 5 J. The Hamiltonian o
he equally coupled four-spin system is already diagonal
he polarization transfer functions are

Tkl
~e! 5 T12

~e! 5 1
12 $1 2 cos~2pJt!%

1 5
48 $1 2 cos~4pJt!% [39]

Tkk
~e! 5 T11

~e! 5 1 2 1
4 $1 2 cos~2pJt!%

2 5
16 $1 2 cos~4pJt!%. [40]

ummation of the polarization transfer functions of spin
pins 2, 3, 4 yields the results for the AX3-type polarization
ransfer functions 3T1(234)

(c) 5 T(234)1
(c) 5 T21

(e) 1 T31
(e) 1 T41

(e) 5
T12

(e), T11
(c) 5 T11

(e), andT(234)(234)
(c) 5 1

3 { T22
(e) 1 T33

(e) 1 T44
(e) 1 T23

(e)

T32
(e) 1 T24

(e) 1 T42
(e) 1 T34

(e) 1 T43
(e)} 5 T11

(e) 1 2T12
(e). With the

ormalization conditions defined by Eq. [22] the summa
eads to

T1~234!
~c! 5 1

12 $1 2 cos~2pJt!% 1 5
48 $1 2 cos~4pJt!%

[41]

T ~234!1
~c! 5 1

4 $1 2 cos~2pJt!% 1 5
16 $1 2 cos~4pJt!%l

[42]

T11
~c! 5 1 2 T ~234!1

~c! 5 1 2 1
4 $1 2 cos~2pJt!%

2 5
16 $1 2 cos~4pJt!% [43]

T ~234!~234!
~c! 5 1 2 T1~234!

~c! 5 1 2 1
12 $1 2 cos~2pJt!%

2 5
48 $1 2 cos~4pJt!% [44]

n agreement with (11).

TAB
Amplitudes of the Harmonic Components of the E

di (i 5 1, 2)

11
(a) 5

48 (a i
(a) 1 =2b i

(a)) 2 1
16 (=2a 2

(a)b 1
(a) 1 =2a 1

(a)b 2
(a

(34)(34)
(a) 5

24 a i
(a)2 1

8 (a 2
(a)a 1

(a) 1 2b 2
(a)b 1

(a)) 2

12
(a) 5

48 (2b i
(a)2 2 a i

(a)2) 1
8 (a 1

(a)b 2
(a) 1 a 2

(a)b 1
(a)) 2 2 1

16

1(34)
(a) 5

48 (a i
(a)2 1 =2a i

(a)b i
(a)) 2 1

16 (a 2
(a)a 1

(a) 1 2b 2
(a)b 1

(a))(h

Note. f12 5 f 22 5 f 31 5 0.
et-

r
ts

d

o

n

The polarization transfer functions for the A2X2-type spin
ystem (cf. Fig. 1d) can be derived in the same way.
oupling constants areJ13 5 J14 5 J23 5 J24 5 J. Again
ithout loss of generality the coupling constantsJ12 andJ34 of

he magnetically equivalent spin pairs are set toJ to reduce th
opology to the equally coupled four-spin system. Us

(12)(34)
(d) 5 1

2 { T13
(e) 1 T14

(e) 1 T23
(e) 1 T24

(e)} 5 2T12
(e) andT(34)(34)

(d) 5
2 T(12)(34)

(d) 5 1
2 { T33

(e) 1 T44
(e) 1 T34

(e) 1 T43
(e)} 5 T11

(e) 1 T12
(e) and

he normalization condition defined by Eq. [22] the polar
ion transfer functions result in (11)

T ~12!~34!
~d! 5 T ~34!~12!

~d! 5 1
6 $1 2 cos~2pJt!%

1 5
24 $1 2 cos~4pJt!% [45]

T ~12!~12!
~d! 5 T ~34!~34!

~d! 5 1 2 1
6 $1 2 cos~2pJt!%

2 5
24 $1 2 cos~4pJt!%. [46]

EXPERIMENTS

In order to verify the analytical polarization transfer fu
ions, experimental transfer functions were acquired fortrans-
henylcyclopropane carboxylic acid (19). The coupling con
tants of the1H spin system areJ12 5 4.1 Hz,J13 5 9.4 Hz,
14 5 6.8 Hz,J23 5 5.3 Hz,J24 5 8.2 Hz, andJ34 5 24.6
z. After selective excitation of the first spin isotropic mix
onditions were created using the DIPSI-2 sequence (29). A set
f 1D experiments with incremented isotropic mixing peri
as recorded. Each increment corresponds to a com
IPSI-2 cycle of durationtcyc 5 5.76 ms. From these expe
ents the experimental polarization transfer functions
een extracted by using the integrated intensities as func
f the mixing timet. The results forT11(t), T12(t), T13(t),
ndT14(t) are shown in Fig. 2.
The theoretical polarization transfer functions oftrans-phe-

ylcyclopropane carboxylic acid were calculated using
eneral results of Eqs. [23] and [27], respectively. The am

udes of the 12 frequency components are summarized in
. Although all harmonical components are nonzero only a
alf of the frequency components contribute significantly to

3
ctive AMX2-Type Spin System (cf. Eqs. [33]–[38])
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olarization transfer functions (underlined coefficients
able 4).
Figures 2A–2D show the experimental and theoretical

FIG. 2. For the1H spin system oftrans-phenylcyclopropane carboxylic a
24.6 Hz (19), the theoretical (solid curves) and experimental (diamonds)

ixing conditions. The experimental transfer functions were extracted from
sotropic mixing period of increasing duration. In A9 to D9 the main frequency c
-

arization transfer functionsT11(t), T12(t), T13(t), andT14(t),
espectively. Since relaxation was not taken into consider
n the theoretical transfer functions the correspondence

withJ12 5 4.1 Hz,J13 5 9.4 Hz,J14 5 6.8 Hz,J23 5 5.3 Hz,J24 5 8.2 Hz, andJ34

nsfer functions (A)T11(t), (B) T12(t), (C) T13(t), and (D)T14(t) are shown for isotropi
eries of 1D experiments in which the selective excitation of spin 1 wasfollowed by an
ponents of the transfer functions are shown (cf. underlined coefficients in T
cid
tra
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om



t ure
2 ne
p ans
f

for
t
a l
c
t
A fo
i wa
d rm
n of
f ee
d
t ac
c sp
s o
i ion
a tim
m on
s tion
(

ch
C c-
t on
t g

t
t
a

so-
c e of
a ments
( co-
h cou-
p n
i the
c hich
b iso-
t

nce
t g of
m em
i er
f os-
i er
f der
i far.
P may
f

d Gl
2 schen
I for a
H at the
“

P
t

a
a
a
b
b 1
b
c
c
c
c
c
c

r
T
a els
T
a

26 LUY, SCHEDLETZKY, AND GLASER
ween theory and experiment is quite satisfactory. Fig
A9–2D9 show the main harmonic components (underli
refactors in Table 4) which contribute to the theoretical tr

er functions.

DISCUSSION

Analytical polarization transfer functions were derived
he general case of four isotropically coupled spins1

2 with
rbitrary coupling constantsJij , i , j # 4, and for the specia
ases of AMX2-type and linear AM2X-type effective coupling
opologies. In addition it is shown that the AX3-type and the

2X2-type spin systems can be reduced to the case of
dentically coupled spins for which a general solution
erived. The transfer functions can be useful for the dete
ation of optimal mixing times in TOCSY experiments

our-spin systems. This is quite significant since it has b
emonstrated previously in applications to amino acids (4) that

he simple two-spin approximation can yield extremely in
urate estimates of the ideal mixing time in more complex
ystems. The transfer functions presented correspond t
deal isotropic mixing case where experimental imperfect
nd relaxation are neglected. In order to estimate op
ixing times for practical applications, the transfer functi

hould be multiplied with an appropriate damping func
20).

For homonuclear Hartmann–Hahn mixing sequences su
W irradiation (21) or MLEV-17 (22) where a nonzero effe

ive spin-lock field is created, the effective Hamiltonian c
ains a term*SL 5 2pneffFx in addition to the isotropic mixin

TABLE 4
Calculated Coefficients of the Frequency Components of the

olarization Transfer Functions for the Four-Spin System of
rans-Phenylcyclopropane Carboxylic Acid

T11 T12 T13 T14 Frequency

1
(9) 0.004080 0.004929 20.029223 0.028373 16.3847

2
(9) 0.121756 0.181430 20.005243 20.054430 72.1458

3
(9) 0.186664 20.082193 0.138634 0.130224 94.9386

12
(9) 0.130910 0.085895 0.004187 0.040827 22.7928

13
(9) 0.002861 20.005151 20.000882 0.008895 55.761

23
(9) 0.004386 0.002333 0.023335 20.021282 78.5539

11
(9) 0.123135 0.122509 20.029244 0.029870 24.8581

21
(9) 0.000179 0.000486 0.004240 20.004547 30.9030

31
(9) 0.048648 20.072729 0.056643 0.064733 47.2877

12
(9) 0.001685 20.001739 0.005487 20.002062 53.6958

22
(9) 0.076118 0.034393 0.043375 20.001650 70.0805

32
(9) 0.000233 0.000413 0.002830 20.003009 125.8420

Note.For T11 the coefficients correspond toa91–c932 of Eqs. [27] to [30]. Fo

12, T13, andT14 the coefficients correspond toa1–c32 of Eqs. [23] to [26].T13

ndT14 are derived from Eqs. [23] to [26] by a permutation of the spin lab
he given frequencies correspond toum i 2 lu for ai

(9), to um i 2 m j u for bij
(9),

nd to um i 2 n j u for cij
(9).
s
d
-

ur
s
i-

n

-
in
the
s
al
s

as

-

erm * iso. Since *SL commutes with* iso and with I i ,x the
ransfer functions in Table 2 still apply if the axis labelsx, y,
ndz are replaced byy, z, andx, respectively.
Although isotropic mixing experiments are commonly as

iated with homonuclear spin systems, they can also b
dvantage in heteronuclear coherence transfer experi
2, 23–28) for efficient in-phase coherence order-selective
erence transfer, albeit with a reduction of the effective
ling constants by a factor of1

3. If this scaling factor is take
nto account, the transfer functions derived also apply to
ase of heteronuclear isotropic mixing experiments in w
oth homonuclear and heteronuclear spins are effectively

ropically coupled.
Under isotropic mixing conditions negative cohere

ransfer has been found only for spin systems consistin
ore than four spins12 (3). For the general three-spin syst

t could be shown in (10) that the polarization transf
unctions under isotropic mixing conditions are always p
tive. However, the conjecture (3) that coherence transf
unctions are also positive for all four-spin systems un
sotropic mixing conditions could not be proven so
ossibly the analytical solutions presented in this paper

orm the basis of such a proof.

ACKNOWLEDGMENTS

This work was supported by the DFG under Grants Gl 203/1-5 an
03/1-6. B.L. acknowledges a scholarship of the Fonds der Chemi

ndustrie and the Sonderforschungsbereich 472. S.J.G. thanks the DFG
eisenberg Stipendium (Gl 203/2-2). The experiments were performed

Large Scale Facility for Biomolecular NMR” (ERB CT 950034).

REFERENCES

1. L. Braunschweiler and R. R. Ernst, Coherence transfer by isotropic
mixing: Application to proton correlation spectroscopy, J. Magn.
Reson. 53, 521–528 (1983).

2. S. J. Glaser and J. J. Quant, Homonuclear and heteronuclear
Hartmann–Hahn transfer in isotropic liquids, in “Advances in Mag-
netic and Optical Resonance” (W. S. Warren, Ed.), Vol. 19, pp.
59–252, Academic Press, San Diego (1996).

3. M. Rance, Sign reversal of resonances via isotropic mixing in
NMR-spectroscopy, Chem. Phys. Lett. 154, 242–247 (1989).

4. M. L. Remerowski, S. J. Glaser, and G. P. Drobny, A theoretical
study of coherence transfer by isotropic mixing: Calculation of
pulse sequence performance for systems of biological interest,
Mol. Phys. 68, 1191–1218 (1989).

5. J. Cavanagh, W. J. Chazin, and M. Rance, The time dependence of
coherence transfer in homonuclear isotropic mixing experiments, J.
Magn. Reson. 87, 110–131 (1990).

6. A. Bax, G. M. Clore, and A. M. Gronenborn, 1H–1H correlation via
isotropic mixing of 13C magnetization, a new three-dimensional
approach for assigning 1H and 13C spectra of 13C-enriched pro-
teins, J. Magn. Reson. 88, 425–431 (1990).

7. H. L. Eaton, S. W. Fesik, S. J. Glaser, and G. P. Drobny, Time
dependence of 13C–13C magnetization transfer in isotropic mixing
experiments involving amino acid spin systems, J. Magn. Reson.
90, 452–463 (1990).

.



1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

27ISOTROPIC MIXING TRANSFER FUNCTIONS FOR FOUR COUPLED SPINS
8. S. J. Glaser and G. P. Drobny, Assessment and optimization of
pulse sequences for homonuclear isotropic mixing, in “Advances in
Magnetic Resonance” (W. S. Warren, Ed.), Vol. 14, pp. 35–58,
Academic Press, New York (1990).

9. S. S. Wijmenga, H. A. Heus, B. Werten, G. A. van der Marel, J. H.
van Boom, and C. W. Hilbers, Assignment strategies and analysis
of cross-peak pattern and intensities in the three-dimensional
homonuclear TOCSY–NOESY of RNA, J. Magn. Reson. B 103,
134–141 (1994).

0. O. Schedletzky and S. J. Glaser, Analytical coherence-transfer
functions for the general AMX spin system under isotropic mixing,
J. Magn. Reson. A 123, 174–180 (1996).

1. N. Chandrakumar, G. V. Visalakshi, D. Ramaswamy, and S. Sub-
ramanian, Analysis of collective modes in some AMXN systems, J.
Magn. Reson. 67, 307–318 (1986).

2. G. V. Visalakshi and N. Chandrakumar, Automated generation of the
commutator algebra for NMR problems, J. Magn. Reson. 75, 1–8
(1987).

3. N. Chandrakumar, Coherence transfer under isotropic mixing III, J.
Magn. Reson. 71, 322–324 (1987).

4. A. Majumdar, Analytical expressions for isotropic mixing in three-
and four-spin topologies in 13C systems, J. Magn. Reson. A 121,
121–126 (1996).

5. A. Messiah, “Quantum Mechanics,” North Holland, Amsterdam (1961).

6. I. N. Bronshtein and K. A. Semendyayew, “Handbook of Mathe-
matics,” Verlag Harri Deutsch, Frankfurt (1985).

7. A. Wolfram, “Mathematica. A System for Doing Mathematics by
Computer,” Addison–Wesley, Redwood City, CA (1988).

8. P. L. Corio, “Structure of High Resolution NMR Spectra,” Aca-
demic Press, New York (1966).

9. C. Radloff and R. R. Ernst, Spin topology filtration in N.M.R., Mol.
Phys. 66, 161–197 (1989).
0. S. J. Glaser, Coupling topology dependence of polarization-trans-
fer efficiency in TOCSY and TACSY experiments, J. Magn. Reson.
A 104, 283–301 (1993).

1. A. Bax and D. G. Davis, Practical aspects of two-dimensional trans-
verse NOE spectroscopy, J. Magn. Reson. 63, 207–213 (1985).

2. A. Bax and D. G. Davis, MLEV-17-based two-dimensional homo-
nuclear magnetization transfer spectroscopy, J. Magn. Reson. 65,
355–360 (1985).

3. D. P. Weitekamp, J. R. Garbow, and A. Pines, Determination of
dipole coupling constants using heteronuclear multiple quantum
NMR, J. Chem. Phys. 77, 2870–2883 (1982); Erratum, J. Chem.
Phys. 80, 1372 (1984).

4. P. Caravatti, L. Braunschweiler, and R. R. Ernst, Heteronuclear
correlation spectroscopy in rotating solids, Chem. Phys. Lett. 100,
305–310 (1983).

5. G. W. Kellog, The anisotropy of heteronuclear isotropic mixing, J.
Magn. Reson. 97, 623–627 (1992).

6. J. Quant, S. J. Glaser, and C. Griesinger, Broadband isotropic
mixing for heteronuclear coherence transfer, 36th Experimental
NMR Conference, Boston, MA (1995).

7. M. Sattler, P. Schmidt, J. Schleucher, O. Schedletzky, S. J. Glaser,
and C. Griesinger, Novel pulse sequences with sensitivity enhance-
ment for in-phase coherence transfer employing pulsed field gra-
dients, J. Magn. Reson. B 108, 235–242 (1995).

8. M. Sattler, M. Schwendinger, J. Schleucher, and C. Griesinger,
Novel strategies for sensitivity enhancement in heteronuclear mul-
tidimensional NMR experiments employing pulsed field gradients,
J. Biomol. NMR 6, 11–22 (1995).

9. A. J. Shaka, C. J. Lee, and A. Pines, Iterative schemes for bilinear
operators; application to spin decoupling, J. Magn. Reson. 77,
274–293 (1988).


	INTRODUCTION
	THEORY
	TABLE 1
	TABLE 2

	GENERAL RESULTS
	SPECIAL CASES
	FIG. 1
	TABLE 3

	EXPERIMENTS
	FIG. 2
	TABLE 4

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

