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Analytical polarization transfer functions are presented for spin  ogy consisting of four spins with equal coupling constants wer
systems consisting of four spins ; with arbitrary coupling constants  derived by Majumdar¥4). In this article, analytical polariza-
under isotropic mixing conditions. In addition, simplified transfer  {jon transfer functions are presented for the general case of fo
functions were derlved_for symmetric cou_plmg topologlejs._ Based coupled sping under isotropic mixing conditions with arbi-
on these transfer fL_mctlons optlmal_ duratlgns for the mixing pe- trary coupling constantg,. Furthermore the special cases of
riod can be determined for correlations of interest. © 1999 Academic . - -
brece an AMX_Z-type z_and a I_mgar ANKX-type spin system are dis-

Key Words: Hartmann-Hahn transfer; isotropic mixing; analyt- cussed in dgta'l and it is shown that theXA-type and the
ical transfer functions: TOCSY: TACSY. AX-type spin systems can be reduced to the case of a fol
spin system with identical coupling constadis= J.

INTRODUCTION THEORY

Isotropic mixing (., 2) has become one of the most impor-  For a spin system consisting of four coupled sgjtike ideal
tant techniques for the transfer of polarization in high-resolgsotropic mixing Hamiltonian has the form

tion NMR spectroscopy. Many homonuclear and heteronuclear

experiments use isotropic mixing steps to maximize polariza-

tion transfer. The efficiency of isotropic mixing experiments

depends critically on the duration of the mixing time. A ratio-

nal choice of the optimum mixing time can be made based on

coherence or polarization transfer functions which describe the

dynamics of the transfer of interest. Although transfer fundn analogy to the case of three coupled spins under isotrop

tions can be calculated numerically with the help of simulatiofixing conditions, polarization transfer functions can be de

programs 8-9), closed form analytical expressions for importermined if the eigenvalues and eigenfunctionsf, are

tant transfer functions are highly desirable. known (10). As

Analytical isotropic mixing transfer functions have been

reported for a number of special cases. For a system consisting [H#i F2] =0 2]

of two isotropically coupled spinsthe transfer functions were

derived by Braunschweiler and Erng).(For the general case

of three coupled spinsthe coherence and polarization transfer

functions have recently been reportel)( Polarization and

coherence transfer functions have also been reported for iso- [#iso, F2] =0 (3]

tropically coupled AX, and AX; spin systems and for AX

spin systems wittN = 6 (11, 1J. Furthermore it has beena convenient basis is formed by a set of simultaneous eige

shown that the evolution frequencies in agX, system are functions|J, m) of the square of the total spin operafet and

always identical to the evolution frequencies in a correspongf F,. These eigenfunctions may readily be constructed wit

ing AXy.n-: System (3). Analytical polarization transfer the help of Clebsch—Gordan coefficientkby, Note that the

functions for a linear spin chain and a star-like coupling topoéigenfunctions depend in general on the order in which th
single-spin functions are combined. Here we combined spins

1 To whom correspondence should be addressed. F42:69 7982 9128. 2 and 3, 4 first, before the two pairs were combined (se
E-mail: sg@org.chemie.uni-frankfurt.de. Table 1).
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TABLE 1
Simultaneous Eigenfunctions of F? and F,

2, 2 = |acaa)
12, 1) = 3 (laaaB) + |aaBa) + |aBac) + |Baaa))
12,0 = (laapp) + |apap) + [appa) + [Bacp)
+ |BaBa) + |BBaa))
[2, —1) =3 (|«BBB) + |BaBB) + |BBaB) + |BBBa))
2, -2) = |BBBB)
11,1, D =3 (Jaaap) + |aaBa) — |aBaa) — |Baaa))
11,0, D = - (laeBp) — |BBae))

1, =1, 1 = 3 (laBBB) + [BaBB) — |BBap) — [BBB))
11,1,2 = - (lapac) — |Baca))
[1,0,2 =} (laBap) + [aBBa) — |Bacp) — |Bapa))
11,2 = - (lapBp) — |Bapp)
11,1,3 = - (laaap) — aapa))
1,0, 3 = 3 (laBap) — [aBBa) + |Bacp) — |Bapa)
1, -1,3 = - (1BBaB) — 1BBB)
0,0, D = 7 (laeBp) + |BBac) — 7= (|aBap) + [appa)

+ [Baap) + |BaBa))
0,0, 2 =3 (lapap) — |appa) — [Bacp) + |Bapfw)

In the basigJ, m) the Hamiltonian is block diagonal with

nine submatrices: five identical X 1 matrices

i<j

forJ =2 andm = 2, 1, 0,—1, —2; three identical 3x 3

matrices

(Bll B, Bl3>
B=2mw Bx By By
Bs; Bsz Bass
(E - A) \/EC \/EB
= 277( \JEC (=2A - 3) D ) [5]
\2B D (24 - 3)

forJ =1 andm = 1,
J=0

0, —1; and one 2X 2 matrix for

_ Y
= —2A) \/3D) (6]

with

_\112+Ja4_ A—le_J34
T4 T4

Jigt Jig+ Jog + ‘324_ Jig = Jia+ Jpz3 = Jog

A= : =
4 4

—Ji3 = Jig+ g+ J24_ _ Jig = Jig = Jog + Jos

B 4 ' B 4 '

[7]

The eigenvalue\ of matrix A is given by Eq. [4]. The three
eigenvalueg; of the 3X 3 matrix B can be derived with the
help of Cardan’s formulal@):

my= — % + 47R cos(i)
A b+
M2s= —3~ 4R CO< 3 ) [8]
with
¢ = arcco{ ;?) [9]

1
Q= ﬁ[(A —23)(12%% - 36A*?

+9(B2+ C2— D?) + A?) — 25(2A% — 837)]
+ 2[AC2— AB2 — BCD] [10]

R (A —23)%+6B2+ 12A2+ 6C2 + 3D2. [11]

:§\J

The eigenvalueg; of C can be obtained by solving its qua-
dratic characteristic polynomial
V1’2 = —AF 27TW [12]

with

W= A2+ 3D?+ 43(3 - A). [13]
The eigenvectors of matriB can also be solved analytically.
For each eigenvalug; the three components, B;, andvy; of
the corresponding eigenvector can be expressed in terms of |
matrix elements3,, defined in Eq. [5],
Bi=ci®n; yi = e,

a; = c{**¥/n;; [14]
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with TABLE 2
Eigenfunctions of €, Used for Calculations
(Imn) _ _ _ _
Ci - an(an BIm BIn) BmmBnn + anBIn w,l) _ |2Y 2)
+ BnnBIm + (Bmm_ BIm + Bnn - Bln)u‘i - IJvi2 Iiz;z E: é;
[15] [va) = [2,=1)
|d’5> = ‘21 -2)
. . |¢'6> = 0(1|1, 11 1> + Bl‘lr l! 2 + yl|1 1! 3
and the normalization ) = a1, 1, D + BalL, 1,2 + v,J1, 1, 3
Id’s> = aailx 1,0+ Ba}ly 1,2+ 'Ya}l 13
_ (1237 2 (23D 2 (3127 2 Po) = 1|1, 0, D + B4f1,0,2 + v]1,0,3
n = (EF)2 4 (e 4 (c9)%. [16] ) = @1, 0, D + BJ1, 0,2 + 71, 0,3
|‘/f11> = 0‘3|1: 0,0+ Ba‘lv 0,2+ 'Ya|1v 0,3
This solution for the eigenvectors of matiis general if the [12) = @11, =1, D + Bal1, =1, 2D + 741, -1, 3)
three eigenvaluest; are nondegenerate. Furthermore it is [13) = @1, =1, ) + BZI =1L 2+ vl -1, 3

1
1
required that |‘/f14> = 0‘3|1: -1, 0+ Bsll, -1, 2+ 73|1v -1,3
0
0

|‘//15> = 771|0: 0,0+ §1|0: )
[r16) = 2|0, 0, D + £,|0

i 2 Bmm_ BIm + Bnn - BIn [17] . . .
Note.The coefficientsy;, B, i, mi, and{; are given in Egs. [14] and [18].
for {Imn} = {123}, {231}, {312}. With only slight varia-
tions of the coupling constants these conditions can always be . _ _
fulfilled and Eqs. [14]-[16] yield the resulting eigenvectofS & diagonal matrix with the elementsi, = (U)2, = (U)ss

components. = (U)§4 = (U)ss = exp{—iAt}, (U)es = (U)o = (U).1212 =
The two components; and{; of the eigenvector for each of eXp{_'flT}’ (U)77_= (U)lolo_: (V) 121z = eXp{—leT}_,
the eigenvalueg; of matrix C can be expressed as Ues = (V)i = (U)saae = exp{=ipst}, (U)isis =

exp{—iv,7}, and (U)ss = exp{—iv,7}. The normalized

. olarization transfer function between two operatdendB is
My, = {1 =C0SY; —L{,=my=sinyY [18] gefined as2) P

with
_ Tr{B'U(1) AU'(7)}
) (3D ) TaelD = 71(B78)
U= arctan 5o 4w [19]

[22]

_ With the explicit form of the propagatadd (1) (Eq. [21]) and
and if 2 — A + W = 0 then of the eigenfunctionsy,) (Table 2), the desired polarization
transfer functions can be derived in a straightforward way

T ¥D>0 Compact analytical solutions were found with the help of the
2 D= 20] algebraic progranMathematica(17).
= :
7. ipb<o0
2 GENERAL RESULTS

Based on Egs. [14] and [18] the eigenfunctidig) of the  The following discussion is focused on polarization transfe
isotropic Hamiltonian¥;,, can be expressed in terms of thgunctions betweeh,, andl , (with k, | = 1, 2, 3, or 4). Except
eigenfunctiongJ, m) of F* andF, (Table 2). for constant terms, all polarization transfer functions can b

The eigenfunctionsyn), . . . Jis) correspond to the eigen-expressed as combinations of 12 cosine terms with the osc
value A, the eigenfunctiongys), |i), and [ 0 s, the Jation frequencies corresponding to differences of the eigel
eigenfunctiondys,), [{10), and [iss) to w,, the eigenfunctions values|w, — A|, | — |, and|p, — v/.

|Ws), |11), and|yia) to s, and the eigenfunctioris;s) and|e) In practice, the polarization transfer between two differen
to the eigenvalues; andv,, respectively. spins k # |) is of particular interest, because it describes th

Hence, in the eigenbasiig,), . . . [ys) Of ¥, the propaga- mixing-time dependence of the integrated intensity of the cro:
tor peak between the spifksandl. The transfer functiol ,,(1) =

T,,,—1,, between spirk = 1 andl = 2 can be expressed in the
Uisol ) = exp{—i #iso7} [21] form
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Ti(1) = 2 afl - cod|p; — A7)}

i=1

+ > by{l — cos|p — |7}

i<j

+2 ci{l - cod|u; — th)}

i=1j=1

with the coefficients

5
a = _R(aiz_ 2B7)

_aig(viy; — BiBy) alBf + afp?
afa? BB}
16 4
o - X (2a? — BY) y€<3mj %5;)
i=—— %5, Y4l = @& |
) 24 ] 4.3 8

The transfer functionsT(7) for arbitrary k # | can be
calculated based on Egs. [23]-[26] if the spin labels of the

coupling constants are permuted.

1/ aim i
c;,«—<o”“+yg [30]
\j

7j_Bile2
"4l 3T 2 6)

\/
Again, for arbitraryk the transfer functiondl(7) can be
obtained by Egs. [27]-[30] by a permutation of the spin labels

SPECIAL CASES
[23] : : : .

The general solution presented is valid for all four-spir
systems with nondegenerate eigenvaluggcf. Egs. [8] and
[12]) and the restrictions of Eq. [17]. In this section we will
discuss some special coupling topologies with simplified cc
herence transfer functions (cf. Fig. 1).

The special case of an effective AMXype spin system is
shown in Fig. 1a. In this case the spins 3 and 4 are magnetica
equivalent agd,; = J,, andJ,; = J,,. Since coherence transfer
functions do not depend on the coupling constant between t
two equivalent spins 3 and 4, is set to zero without loss of
generality (8). In this case the polarization transfer functions
[25] simplify according to the reduced block structure of the Ham

iltonian. The submatrixB of Eq. [5] consists of a 4 2 and a
1 X 1 block

™
(@ —

[24]

[26]

Ji2 = 2313 — 253 \@( Jos—Jim) O
\r@(‘]zs - 313) =31, 0

The transfer functiong (1) that represent the integrated
intensities of the diagonal signals can be derived in analogy to

the transfer functions (7). For example, the transfer function

T,.(7) is given by

3

Tiu(r) =1- 2 ajf{l— cod|u — Al7)}

i=1

- bi{l — cod | u; — Mj|7)}

i<j

3 2
-2 > cifl — cod|p — v|n)}
i=1j=1
with the coefficients
5
aj = fg(ai + \Eﬁi)z
, 1 aiaj aiBj ajBi 2
bj —4<2+ YiYi T2 2

0 0 Jiz
[31]
and the matrixC of Eq. [6] is diagonal
T (Jp— 4d13— 4 0
(@ _ " [ VY12 13 23
co=3 ("% ) e

The resulting eigenvalues of the Hamiltonian of the effective
AMX ,-type spin system are

a
)\(a) = E (\]12 + 2J13 + 2J23) = A(a)

[27] @_ — W@
Mi2= 5 (—Ji2— Jiz— Jps ¥ W?)
™
M(sa) = 2 Jiz
™
[28] V(la) = § (312 —4J;5— 4\]23)
37
[29] V(za) =—>5J [33]

2
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(b) @&

FIG. 1. In addition to the general case with arbitrary coupling constants five different special coupling topologies of a spin system consisting of fou
1 are discussed (see text): the general effective A)pe spin system (a), the effective linear AX4type spin system (b), the AxXtype spin system (c), the
A,X,-type spin system (d), and the equally coupled four-spin system (e). Equal coupling constants are shown with equal line thickness. Dotteddirtes r

coupling constants between magnetically equivalent spins.

with

w® = \ff(z\]lz —Jiz— 323)2 + 8(J13— J29) 2. [34]

The components of the eigenvectors of th& 2 block of the
matrix B® are

aff = B5 = cosy @, —af =B =siny® [35]
with the mixing angle

18(Jy5 — Jya)
(@ — \ 23 13
P arctar( 230y — Jia— Jya— W@ [36]

2

TR(1) =1- 2 df{l - cod|u® — A@|7)}

i=1

—e{l—cod|uf® — n¥|n)}

3 2

-2 2 ff{l - cog|p{” — v¥n}  [38]

i=1j=1

but with only six nonvanishing coefficients, d,, €5, 21, T2,
andf;, shown in Table 3 for the polarization transfer functions
T, T&yes TS, and T, where (34) indicates the pair of
effectively equivalent spins (for exampleT{%,

T 1s+1a)- The polarization transfer functioisy and T,
are obtained fronTy andT %, by a simple permutation of the
spin labels of the coupling constants.

The resulting polarization transfer functions have a form sim- If J;, = 0 an effective linear AMX-type spin system results
ilar to that of the general polarization transfer functions (Eq€7ig. 1b) which is of interest for spin systems containing e

[23] and [27])

Tid(n) = 3 df1 -~ cos|u® — A}

i=1

+epfl - cod|puf® — ni|7)}

+ 2 2 {1 = cog|p = »fF|n)}  [37]

i=1j=1

methylene group. The polarization transfer functions for thi
case are derived from the effective AMXype spin system by
simply settingd;, = 0. As a result the eigenvalugs” andvy’
vanish as well as the coefficiefi, of the polarization transfer
functions.

The analytical solutions for the effective Axype coupling
topology with three magnetically equivalent spins 2, 3, and
and for the AX,-type coupling topology with magnetically
equivalent spins 1, 2 and 3, 4, respectively, were derived |
(12). The coupling constants for the AXype spin system are
Ji, = Ji3 = Jiy = J. Since the coherence transfer functions
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TABLE 3
Amplitudes of the Harmonic Components of the Effective AMX,-Type Spin System (cf. Egs. [33]-[38])

d@=1,2) €, fu(i=1,2) fa2
TH 7 (af? + V2B™)? 15 (V2afBY + V2a'BY — afaf?)? 3 (V2a® = B 5
TS H o §(aal® + 2B BL)° g 0
T&az) 4_?;1(25;6)2 _ a‘(a)Z) %(a(lajﬁga) + a(za)Bga))Z _ %aéa)zaga)z ZLA(B‘(a)Z _ 2al(a)2) %
f2
T 5o + V2aPB®)  —H(afal + 28080 nEnP — VEnP — Vanere) e pegey O
24

Note. f, = f,, = f;; = 0.

do not depend on the coupling constants between the magneffhe polarization transfer functions for the,X,-type spin
ically equivalent spins 2, 3, and 4 we may alsokgt= J,, = system (cf. Fig. 1d) can be derived in the same way. Th
Js, = J without loss of generality (cf. Fig. 1c). In this case theoupling constants arg,; = Ji, = J,3 = J,, = J. Again
spin topology is reduced to the spin system consisting of fowithout loss of generality the coupling constadtsandJ,, of
equally coupled spins (cf. Fig. 1e) with the coupling constantise magnetically equivalent spin pairs are set to reduce the
Jio = Jis = Jiu = Joz = Jpy = J3y = J. The Hamiltonian of topology to the equally coupled four-spin system. Using
the equally coupled four-spin system is already diagonal af},q.,, = 3{TQ + T + TS + TN} = 2T and Tz =

the polarization transfer functions are 1-Tey=HTQ+TO+TY + T =TY + T and
the normalization condition defined by Eq. [22] the polariza
TO=T9=21{1- cog2mI7)} tion transfer functions result irlL()
+ 2 _
ss{l — cog4mn)} [39] Tﬁf)zxu) = TE(31)4)(12> =§{1 — cog2mJI7)}
e _— 1@ 1 _1 —
Tiie=Tip =1 = a{1 — cod2mIn)} + £{1 - cog4mIn)} [45]
— {1 — coq4mwI7)}. 40
1et1 — cos4mIn)) [40] 00 = Tihay = 1 — H{1 - cog2min)
Summation of the polarization transfer functions of spin 1 to — 511 — coq4mI7)}. [46]

spins 2, 3, 4 yields the results for the AX¥/pe polarization
transfer functions B{(ay = Tihsyy = TS + TH + TH =
3T8, T = TH, andTGypan = 3{TH + TH + Tid + TH
+ T8 + T_Si) T T‘(*eZ)_Jf TS + _T‘(g} = Ti2 + 2T13. With the . In order to verify the analytical polarization transfer func-
normalization conditions defined by Eq. [22] the summatiofy, s experimental transfer functions were acquirectans
leads to phenylcyclopropane carboxylic acidd). The coupling con-
stants of the'H spin system ard,, = 4.1 Hz,J,; = 9.4 Hz,
T sy = {1 — cog27I)} + {1 — cog4mIr)} Jis = 6.8 Hz,J,3 = 5.3 Hz,J,, = 8.2 Hz, andJ;, = —4.6
Hz. After selective excitation of the first spin isotropic mixing
[41] conditions were created using the DIPSI-2 sequeBgg 4 set
of 1D experiments with incremented isotropic mixing periods
TSh1 = {1 — cod2mI7)} + 15{1 — cog4mIn)}l was recorded. Each increment corresponds to a comple
DIPSI-2 cycle of duratiorr,,, = 5.76 ms. From these experi-
[42] ments the experimental polarization transfer functions hav
been extracted by using the integrated intensities as functio
of the mixing timer. The results forT,;(7), T1.(7), T1s(7),

EXPERIMENTS

T =1-T =1—3{1— cog2mn)}

— 511 — cog4mIn)} [43] and Ty,(7) are_shown in Fig. 2. _
The theoretical polarization transfer functionstins-phe-
T Sspeag = 1 — Tihay = 1 — {1 — cog2mI7)} nylcyclopropane carboxylic acid were calculated using th
; general results of Egs. [23] and [27], respectively. The ampl
— 2511 — cog4mIT)} [44]  tudes of the 12 frequency components are summarized in Tat

4. Although all harmonical components are nonzero only abol
in agreement withX(1). half of the frequency components contribute significantly to th
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A

T,
C D
1.0 1.0
T13 [ Tu [
0.81- 0.8~
0.6~ 0.8

0.2 -0.2

0.4 . . . 0.4l
200 400 800 200 400 600
7 [ms]

T [ms]

FIG. 2. For the'H spin system ofrans-phenylcyclopropane carboxylic acid wifl, = 4.1 Hz,J;; = 9.4 Hz,Jy, = 6.8 Hz,J,3 = 5.3 Hz,J,, = 8.2 Hz, andl,,
= —4.6 Hz (19), the theoretical (solid curves) and experimental (diamonds) transfer functiofis,(#) (B) T.(7), (C) T15(7), and (D) T.(7) are shown for isotropic

mixing conditions. The experimental transfer functions were extracted from a series of 1D experiments in which the selective excitation of &pioviedidry an
isotropic mixing period of increasing duration. Iri o D' the main frequency components of the transfer functions are shown (cf. underlined coefficients in Tabl

polarization transfer functions (underlined coefficients ifarization transfer function®,,(7), T12(7), T13(7), andT4(7),
Table 4). respectively. Since relaxation was not taken into consideratic

Figures 2A-2D show the experimental and theoretical pot the theoretical transfer functions the correspondence b
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TABLE 4 term ¥, Since ¥ commutes with¥,, and with |;, the

Calculated Coefficients of the Frequency Components of the transfer functions in Table 2 still apply if the axis labalsy,
Polarization Transfer Functions for the Four-Spin System of gndz are rep|aced by’ z, andx, respective|y.
trans-Phenylcyclopropane Carboxylic Acid Although isotropic mixing experiments are commonly asso
ciated with homonuclear spin systems, they can also be
advantage in heteronuclear coherence transfer experime
) 0.004080 0.004929 —0.029223 0.028373  16.3847 (2, 23-2§ for efficient in-phase coherence order-selective ca
al’  0.121756 0.181430 —0.005243 —0.054430 72.1458 herence transfer, albeit with a reduction of the effective col
(,j 8-1222‘153 ‘g-gggégg g-égii’gi 061325537 3‘2‘-3322 pling constants by a factor @f If this scaling factor is taken
12 - . . _V.U4lo¢ . . . .
bl 0002851 —0005151 -—0.000882 0.008895 o5 7611 INtO account, the transfer fun(_:tlon_s _denved a_lso apply to _th
by}  0.004386 0.002333 0.023335 —0.021282  78.5539 Case oOf heteronuclear isotropic mixing experiments in whic
c{)  0.123135  0.122509 —0.029244  0.029870 24.8581 both homonuclear and heteronuclear spins are effectively is
cs!  0.000179 0.000486 0.004240 —0.004547 30.9030 tropically coupled.
cil  0.048648 —0.072729 _0.056643 _0.064733  47.2877 Under isotropic mixing conditions negative coherence

c{ 0.001685 —0.001739 0.005487 —0.002062 53.6958 . .
¢ 0076118 0034393  0.043375 —0.001650 20,0805 transfer has been found only for spin systems consisting

c)  0.000233 0.000413 0.002830 —0.003009  125.8420 More than four spiné_(S). For the general three-spin system
it could be shown in 10) that the polarization transfer

Note.For T, the coefficients correspond &j—c5, of Egs. [27] to [30]. For - functions under isotropic mixing conditions are always pos
Tiz, Tus, andT,, the coefficients correspond &—c., of Egs. [23] 10 [26]-T1s  jtive., However, the conjecture3) that coherence transfer
andT,, are derived from Eqs. [23] to [26] by a permutation of the spin !abel?unctions are also positive for all four-spin systems unde
The given frequencies correspond|to — A| for &, to [, — w| for b{’, . . .. .
and to|w, — »,| for c{. isotropic mixing conditions could not be proven so far.

Possibly the analytical solutions presented in this paper m:
form the basis of such a proof.

tween theory and experiment is quite satisfactory. Figures
2A'-2D' show the main harmonic components (underlined
prefactors in Table 4) which contribute to the theoretical trans-This work was supported by the DFG under Grants Gl 203/1-5 and C
fer functions. 203/1-6. B.L. acknowledges a scholarship of the Fonds der Chemisch
Industrie and the Sonderforschungsbereich 472. S.J.G. thanks the DFG fo
Heisenberg Stipendium (Gl 203/2-2). The experiments were performed at tl
“Large Scale Facility for Biomolecular NMR” (ERB CT 950034).
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